* ~ / . . ; - B
TECHNICAL REPORT RD-GC-93-35 @

LT

A REUSABLE ADA REAL-TIME MULTIPROCESSING
H EXECUTIVE FOR MISSILE SYSTEMS

AD-A273 562

Wanda M. Hughes
Guidance and Control Directorate
Research, Development, and Engineering Center

and

On-line Applications Research, Inc.
2227 Drake Avenue, Suite 10-F
Huntsville, Alabama 35805

September 1993

U.S. ARMY MISSILE COMMAND

Redstorne Arsenal, Alabama 35898-5000

Approved for public release; Distribution is unlimited.

93-27494
[T

| 93 11 38 167

SMI FORM 1021, 1 AUG 85 PREVIOUS EDITION IS OBSOLETE

-

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION
II-19 OR DoD 5200.1-R, IKFORMATION SECURITY PROGRAM
REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED
DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVERT
DISCLOSURE OF CONTENTS OR RECONSTRUCTIOR OF THE
DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE RAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR
SOFIWARE.

UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMS No. 07040188
£xp. Date: Jun 30, 1986
Ta. REPORT SECURITY CLASSIFICATION 10, RESTRICTIVE MARKINGS
UNCLASSIFIED
"2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILTY OF REPORT
[30, OECLASSIFICATION / DOWNGRADING SCHEOULE Approved for public release; Distribution is unlimited.
[PERFORMING ORGANIZATION REPORT NUMBER(S) 3. MONI N NUMBER(S)

TR-RD-GC~-93-35
6a. NAME OF PERFORMI ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING aRaNﬁ'BN
(¥ applicable)

Guidance & Control Directorate
AMSMI-RD-GC-S

€. ADDRESS (Oty, State, and 2iP Code) 75, ADDRESS (Gity, State, and ZIP Code)
Commander, U.S. Army Missile Command
ATTN: AMSMI-RD-GC-S Bldg. 4381 (Wanda Hughes
AL 358985254

‘ 83. NAME OFf FUNDING 7 SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicabie)
— e —————————————
8¢. ADORESS (City, State, anxt ZiP Cocle) 10. SOURCE OF FUNDING NUMBERS
—e— P ————
PROGRAM PROIECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TWiLe (include Secunty Classitication)
A Reusable Ada Real-Time Multiprocessing Executive for Missile Systems

R
12. PERSONAL AUTHOR(S)
Wanda M. Hughes

F13a. TYPE OF REPORT 130, TIME COVEREOD 14. OATE OF REPQRT (Year, Month, Day)]15. PAGE COUNT
Final FROM__6/89 __ 10._1/93 September 1993 18

16. SUPPLEMENTARY NOTATION

17. COsSATt CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FieLo Groue SUB-GrouP RTEMS, C Language, Intertask Communication, Dynamic Memory
Allocation, Semaphore, Executive, Multiprocessing, Ada, Reuse

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Real-Time Executive for Military Systems (RTEMS), is a state—of-the-art, object—oriented, real-
time executive which provides a high performance environment for distributed embedded applications.
This environment supports any mixture of homogeneous and heterogeneous, tightly—and-loosely—coupled
processors. The RTEMS environment is based upon proposed standards for a reai-time distributed task-
ing model. Although Ada was designed to provide a common language for large scale and real-time sys-
tems, it is generally acknowledged that Ada does not provide the complete set of capabilities required by
many real-time military applications. The design philosophy driving the development of RTEMS is to
provide a reusable component which reduces the size and complexity of software development efforts.
This in turn promotes the development of cost effective, easily maintainable real-time weapon systems.

20. DISTRIBUTION / AVAILABILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [SAME AS RPY. 7] OTIC USERS UNCLASSIFIED
222, NAME OF RESPONSIBLE INDWVIDUAL 725, TELEPRONE (incude Area Code) | 22¢. OFFICE SYMBOL
Wanda M. Hughes (205) 8764484 AMSMI-RD_GC-S
DO FORM 1473, saman 83 APR eaiion may De used until exhausted. Ty FICATION OF THi§ PAGE

All other egrtions are obsolete.

UNCLASSIFIED

i/(ii Blank)

TABLE OF CONTENTS

=

4 B W

V. STANDARDIZATIONEFFORTSccc00uunne
V1. EXECUTIVE STANDARDIZATION EFFORTS
VII. LANGUAGE STANDARDIZATION EFFORTS
VIIL. BENEFITS OF STANDARDIZATION
IX. ADA’S REAL-TIMEEXECUTIVEccc0000e

XII. RTEMS INTERNAL ARCHITECTURE
XIII. COMMUNICATION AND SYNCHRONIZATION ...

XV. MEMORY MANAGEMENTc.cc0ivvnnenens
XVL RTEMS LANGUAGE INTERFACES
XVII. CONCLUSION0ttniiiierennecsnncnenannnes

iii/(iv Blank)

INTRODUCTIONitiiiiiinnennecnnanennnnss
REAL-TIME EMBEDDED SYSTEMS
REAL-TIME EXECUTIVEScccennnne.
REAL-TIME APPLICATION AREAS

| Accession Por

1
Dz

NTIS GRALI
DTIC TAR

Unannounced |
Justificetion

oth

DDR

By -~
Digtritution/

| —

Aveiiability Gedesn
iAvsll andjur

b oenany
R

M

I. INTRODUCTION

The weapon systems of today are the most complex in history. They typically contain a
large, complicated real-time embedded software system integrated into a sophisticated hardware
platform. As a result, today’s software technology is pushed to its current limits. Although Ada
was developed to provide efficient solutions to these difficult problems, several shortcomings
have become evident since its adoption. The most notable of these concerns the Ada real-time
executive contained in the runtime support package provided with existing Ada compilers.

Given the complexity of today’s distributed embedded real-time applications, it is neces-
sary to provide application developers with all the features of a modern commercial off the shelf
real-time embedded executive. This executive must provide a solid reusable foundation upon
which high—performance military and commercial distributed embedded systems may be devel-

oped.

In order to understand the problems associated with providing this real-time executive, one
must first understand the domain of real-time embedded applications. In addition, one must un-
derstand the problems which must be addressed during development of real-time embedded ap-
plications and current solution approaches.

II. REAL-TIME EMBEDDED SYSTEMS

An embedded system is any computer system which is built into a larger system consisting
of multiple technologies such as digital and analog electronics, mechanical devices, and sensors.
Real-time embedded systems have a complex set of characteristics which distinguish them from
other software problems. Real-time embedded systems are driven by and must respond to real
world events while adhering to rigorous requirements imposed by the environment with which
they interact. The correctness of the system depends not only on the results of computations, but
also on the time at which the results are produced. The most important and complex characteris-
tic of real-time application systems is that they must receive and respond to a set of external
stimuli with rigid and critical time constraints.

Real-time systems are classified as hard or soft real-time applications. The distinction be-
tween a hard and a soft real-time system is based upon the correctness of data relative to its
timeliness. In a hard real-time system, “correct” data received or processed at the incorrect time
is of no use or, even worse, results in undesired, possibly tragic, consequences. A soft real-time
application has less stringent timing requirements; data is still viable even if it is does not arrive
at the opportune :uoment. A single real-time application can be composed of both soft and hard
real-time components.

A typical example of a hard real-time system is a nuclear reactor control system which
must not only detect failures, but must also respond quickly enough to prevent a meltdown. This
application also has soft real-time requirements because it may involve a man—-machine inter-
face. Providing an interactive input to the control system is not as critical as setting off an alarm
to indicate a failure condition. However, the interactive system component must respond within
an acceptable time limit to allow the operator to interact efficiently with the control system.

II. REAL-TIME EXECUTIVES

A crucial characteristic of real-time applications is the importance of coordinating and
managing a large number of concurrent activities. Unfortunately, most software is designed to
execute with a single thread of control. The real-time executive provides a cornerstone on
which to build a multitasking application. The application can be divided into a set of logical,
autonomous tasks which execute independently, resulting in an asynchronous processing stream.
Tasks may communicate and synchronize both with one another and the external environment
using facilities provided by the real-time executive.

Complex real-time embedded applications can require more computational power than is
available from a single microprocessor. These applications can benefit by distributing the com-
putational activity over a number of microprocessors. A system with microprocessors aii of the
same type is referred to as homogeneous, while a system composed of mixed microprocessor
types is referred to as heterogeneous. A multiprocessor real-time executive provides services
which allow transparent access to global resources as well as communication and synchroniza-
tion between tasks on different microprocessors.

The real-time executive also provides a foundation upon which a rich library of standard
application components can be built. These components can be used repeatedly in other real—-
time projects. Thus, development time and cost are reduced.

IV. REAL-~TIME APPLICATION AREAS

There are many areas, both military and commercial, which utilize real-time embedded
systems. Major application areas include:

* Industrial Control . Instrumentation

* Telecommunications * Consumer Appliances
* Automobiles e Office Electronics

* Aerospace ¢ Military

Although the environments vary widely among these categories, the embedded applications
share the critical need for the services provided by a real-time executive. This common require-
ment makes technology transfer a desirable and effective possibility.

The success of current embedded applications combined with the rapidly increasing power
of microprocessors has lead to a corresponding increase in application complexity, often de-
manding the use of multiple processors in a distributed application. This increase combined
with the continuously expanding number of application areas, has lead to the need for a common
set of capabilities to be provided by a real-time executive. A common capability set encourages
the reuse of software and avoids the retraining of personnel from project to project regardless of
the application area. In addition, real-time software reliability is maximized, development time
is reduced, and software testing and debugging is simplified. As a result, both time and money
are saved during software development.

V. STANDARDIZATION EFFORTS

The importance of defining this common functionality in real-time executives has lead to a
number of standardization efforts. These efforts can be divided into two categories: executive
standards and embedded real-time language standards.

VI. EXECUTIVE STANDARDIZATION EFFORTS

Executive standardization efforts have lead to a variety of interface standards including the
Microprocessor Operating Systems Interfaces (MOSI), the Real-Time Executive Interface Defi-
nition (RTEID), and the Open real-time Kernel Interface Definition (ORKID). Unfortunately,
because these specifications do not attempt to fully define the runtime behavioral characteristics
of a compliant executive, one may have “portable” application software which may or may not
execute in the same manner across multiple compliant executives. For example, neither RTEID
nor ORKID specify whether a numerically low priority indicates a logically low or high priority
task. Thus, a standard which defines only the interface requirements but does not fully define
runtime behavior is iusufficient for real-time embedded applications.

VII. LANGUAGE STANDARDIZATION EFFORTS

Ada was developed to provid: a common language for large scale and real-time systems.
Ada is largely successful in meetiag the needs of this diverse user group. However, the original
and current Ada language definition (ANSI/MIL-STD-1815A-1983) does not adequately satis-
fy the needs of the real-time embedded systems community. One of the most commonly cited
limitations is that it provides only the rendezvous for task communication and synchronization.

The Ada 9X committee has been formed to address problems in the original Ada standard
and develop a second generation Ada standard. Many of the problems addressed by the Ada 9X
committee reflect the development community’s dissatisfaction with the real-time features of
Ada. A number of these specifically reflect the desire for communication, synchronization, and
tasking control features commonly found in real-time executives. Many of these requests con-
flict and no amount of effort will satisfy all users.

In response to the requests for more robust real-time executive features, Ada 9X adds sup-
port for resetting task priorities, critical regions, and asynchronous communication. Ada 9X
support for systems with multiple processors, although improved over that of Ada 83, still leaves
a great deal of implementation detail to the compiler vendor and the end user.

Unfortunately, until Ada 9X is approved, these new features will not be available to the
Ada community. Even after Ada 9X is approved, it will be years before mature products with
the new features will be available. Even then, Ada will only provide a subset of the features
common to most real-time executives, and many of these features are optional. Moreover, no
matter how well the characteristics of the real-time capabilities are specified, their performance
will always be vendor dependent.

VIIL. BENEFITS OF STANDARDIZATION

The current solution to providing Ada developers with real-time embedded executive
functionality is for the Government to purchase commercially off the shelf executives. This
presents problems because the Government does not own, nor has the right to modiiy, code con-
tained within the purchased executive. V&V techniques in this situation are more difficult than
if the complete source code were available. Responsibility for system failures due to faulty soft-
ware is yet another area to be resolved under this envircmment. Although some executive ven-
dors will provide source code at an outrageous price, further problems arise when one considers
licensing and maintenance costs. Typically a license must be purchased for each testbed and
fielded unit. In addition, each processor in a multiprocessor system has to be licensed to use the
executive. The cost of licensing (royalties) combined with the added trouble of insuring com-
pliance with the licensing agreement is unattractive.

By standardizing on a single executive which is completely government owned, the gov-
ernment obtains a maintainable, high~performance executive with uniform behavior across mul-
tiple environments. With an executive based on existing standards, there will already be a body
of commercial and military application developers familiar with the capabilities of such an
executive. This increases the reusability of software, reduces personnel training, and ultimately
leads to significant cost reductions.

IX. ADA’S REAL-TIME EXECUTIVE

Ada provides only the rendezvous construct for task communication and synchronization
and does not address the problems associated with distributed real-time applications. It does not
provide such standard constructs as semaphores, message queues, events, or asynchronous
signals. All other forms of intertask communication and synchronization must be fabricated at
the task level by the user. This results in a high level of overhead for operations which could
have been provided much more efficiently by a real-time executive. For example, to implement
a binary semaphore using the Ada rendezvous requires two context switches even when the
semaphore is available. Acquiring an available semaphore is performed by most executives in a
fraction of the time it takes to perform a single context switch. As a result, a large number of
military embedded applications either do not allow or severely restrict the use of the Ada tasking
facilities.

X. RTEMS

To address this problem, the U.S. Army Missile Command (MICOM) has developed
RTEMS, a state—of-the—art, object—oriented, real-time executive which provides a high perfor-
mance environment for distributed multiprocessor embedded applications. RTEMS provides a
full featured, commercially compatible real-time distributed tasking model. RTEMS includes
the following features:

RTEMS
Executive

Figure 1. RTEMS Application Architecture

* reusable software component based on proposed standards
* multitasking capabilities

* homogeneous and heterogeneous distributed multiprocessing supported
on both tightly and loosely coupled platforms

* event—driven, priority-based, preemptive scheduling

¢ optional Rate Monotonic Scheduling

* numerous communication and synchronization mechanisms

* responsive interrupt management

* deterministic execution times

* dynamic fixed and variable memory allocation

* high level of user configurability
RTEMS is a mature product with over ten man—years of development. The portability of
RTEMS is demonstrated by the current availability for the Intel i80x86 and Motorola MC680x0
CISC processor families, as well the Intel 80960 RISC processor family. RTEMS provides the

capabilities required by software developers designing and implementing time—critical military
applications.

T e

XI. RTEMS APPLICATION ARCHITECTURE

One important design goal of RTEMS was to provide a bridge between two c1, “cal layers
of typical embedded real-time systems. Figure 1 illustrates how RTEMS serves as a buffer be-
tween the project dependent application code and the target hardware. Most hardware dependen-
cies for real-time embedded applications can be localized to the low level device drivers.
RTEMS provides efficient tools for incorporating these hardware dependencies into the system
while simultaneously providing a general mechanism to the distributed application code that
accesses them. A well designed real-time embedded system project can benefit from this archi-
tecture by building a rich library of standard application components which can be used repeat-
edly in other real-time embedded projects.

XII. RTEMS INTERNAL ARCHITECTURE

As illustrated in Figure 2, RTEMS can be viewed as a set of components that work in har-
mony to prov.de a set of services to a real-time embedded application system. The executive
interface presented to the application is formed by grouping services into logical sets called
managers.

Figure 2. RTEMS Internal Architecture

Functions utilized by multiple managers such as scheduling, dispatching, and object man-
agement are provided by handlers in the executive core. Together these components provide a
powerful runtime environment that promotes the development of efficient real-time embedded
application systems.

“

XIII. COMMUNICATION AND SYNCHRONIZATION

In real-time multitasking applications, the ability for cooperating execution threads to
communicate and synchronize with each other is imperative. Distributed embedded applications
place the additional requirement to perform this type of processing across physical processor
boundaries. A distributed real-time executive should provide an application with the following
capabilities:

* Data transfer between cooperating tasks
¢ Data transfer between tasks and ISRs

* Synchronization of cooperating tasks

¢ Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or syn-
chronization, even across processors. However, managers dedicated specifically to communica-
tion and synchronization provide well established mechanisms which directly map to the
application’s varying needs. This level of flexibility allows the application designer to match the
features of a particular manager with the complexity of communication and synchronization
required. The following managers were specifically designed for communication and synchro-
nization:

¢ Semaphore * Event
¢ Message e Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
io one or more shared user resources. The message manager supports both communication and
synchronization, while the event manager primarily provides a high performance synchroniza-
tion mechanism. The signal manager supports only asynchronous communication and is typical-
ly used for exception handling.

XIV. TIME

The development of responsive real-time applications requires an understanding of how
RTEMS maintains and supports time~related operations. The basic unit of time in RTEMS is
known as a tick. The frequency of clock ticks is completely application dependent and deter-
mines the granularity and accuracy of all interval and calendar time operations. The clock tick is
.Jypically provided by some external mechanism such as a real-time clock or counter/timer de-
vice.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing func-
tions such as task delays, timeouts, timeslicing, and the delayed posting of events. An interval
is defined as a number of ticks relative to the current time. For example, when a task delays for
an interval of ten ticks, it is implied that the task will not execute until ten clock ticks have oc-
curred.

Interval timing alone is not sufficient for the many applications which require that time be
kept in wall time or true calendar form. Consequently, RTEMS maintains the current date and
time. This allows selected time operations to be scheduled at an actual calendar date and time.
For example, a task could request to delay until midnight on New Year’s Eve before lowering
the ball at Times Square.

In order to integrate seamlessly with the Ada environment, an RTEMS specific version of
the Ada CALENDAR package must be provided. The CALENDAR package provides only a
subset of the functionality in the RTEMS time manager. Thus, an RTEMS specific version of
CALENDAR can be implemented using the RTEMS time manager.

XV. MEMORY MANAGEMENT

RTEMS memory management facilities can be grouped into two classes: dynamic memory
allocation and address translation. Dynamic memory allocation is required by applications
whose memory requirements vary through the application’s course of execution. Address
translation is needed by distributed applications which share memory with another CPU or an
intelligent Input/Output processor. The following RTEMS managers provide services which
manipulate memory:

¢ Region
¢ Dual Ported Memory
e Partition

RTEMS memory management features allow an application to create simple memory pools
of fixed size buffers and/or more complex memory pools of variable size segments. The parti-
tion manager provides services to manage and maintain pools of fixed size entities such as
resource control blocks. Alternatively, the region manager provides a more general purpose
memory allocation scheme that supports variable size blocks of memory which are dynamically
obtained and freed by the application. The dual-ported memory manager provides executive
support for address translation between internal and external dual-ported RAM address space.

XVI. RTEMS LANGUAGE INTERFACES

RTEMS was designed to provide a multitasking, real-time envirc ament for applications
written in any mixture of high—level languages and assembly. The initial technical approach was
to develop an interface for each language without modifying any underlying RTEMS source
code. Interfaces were developed which provided the full functionality of RTEMS to applications
written in Ada, C, and assembly language. The Ada interfaces to the current RTEMS product
are dependent on compiler specific implementation characteristics. This dependence does not
provide the high reusability found in other RTEMS components.

In order to provide a standard reusable component for the support of Ada—based distributed
real-time military applications, an Ada implementation based on the design of the existing, ma-
ture RTEMS product is currently under development. This will be accomplished not with a
line-by-line translation of C to Ada, but by a thorough implementation of the RTEMS design in
Ada. This approach allows algorithmic enhancements utilizing alternative Ada constructs and
paradigms which should result in an efficient, powerful, and portable executive for Ada applica-
tions. To enhance portability, use of pragmas and machine code constructs will be minimized.

10

XVII. CONCLUSION

An analysis of the software reuse paradigm strongly suggests a tremendous potential for
gain by concentrating on two key attributes of software systems: size and complexity. Boehm
accurately states, “One of the primary controllable factors we have for improving software pro-
ductivity is the number of instructions we choose to develop, either by deferring the develop-
ment of marginally useful features or by using already available software.” Fortunately, this
may be the key factor which impacts software development productivity in the future. Standish
observes, “the cost of software is an exponential function of software size, halving the size of the
software which must be built much more than halves the cost of building it.”

Furthermore, today’s software is the most complex software in history. The software sys-
tems of the future are unlikely to be less complex. In fact, many experts believe that software
complexity is also increasiiag exponentially. Once again, by reducing the complexity of the soft-
ware which must be developed, an exponential reduction in the cost of its development, and
even more importantly, its maintenance, is achieved.

Therefore, generic software is not just a sound engineering goal, but rather an essential tar-
get of opportunity in the battle to bring the software crisis to a suitable end. By identifying key
reusable software components which contain highly complex software functions, developers
achieve the benefits from both a size and complexity viewpoint. With deference to the size and
complexity attributes, RTEMS was designed from ground zero to assimilate them into the fol-
lowing design philosophy:

Build a reusable software component that provides the functionality necessary
to reduce the amount of software in a real-time military application by a
significant amount, and reduce the burden of real-time tactical software
developers by abstracting, isolating, and uncoupling a highly complex, but
key component of most classes of real-time systems.

The developers of RTEMS are confident that these software reuse goals can be realized
through the use of the current release of the RTEMS executive. Furthermore, the completion of
the RTEMS Ada implementation will provide the military systems development community with
a reusable cornerstone and foundation upon which to build cost effective, maintainable software
for the real-time military systems of today as well as those of the 21st century. RTEMS is a
mature reusable real-time executive with robust support for both single and multiprocessor
embedded systems. The RTEMS multiprocessing design supports all combinations of tightly—
and loosely—coupled processors in both homogeneous and heterogeneous processor configura-
tions.

11/(12 Blank)

T

INITIAL DISTRIBUTION LIST

Copies
U.S. Army Materiel System Analysis Activity 1

ATTN: AMXSY-MP (Herbert Cohen)
Aberdeen Proving Ground, MD 21005

ITT Research Institute 1
ATTN: GACIAC

10 W. 35th Street

Chicago, IL 60616

Naval Weapons Center

Missile Software Technology Office

Code 3901C, ATTN: Mr. Carl W. Hall

China Lake, CA 935556001 1

On—Line Applications Research
2227 Drake Avenue SW, Suite 10-F
Huntsville, AL 35805 3

Louis H. Coglianese

Advanced Technology

IBM Corporation Federal Systems Company

Route 17C, Mail Drop 0210

Owego, NY 13827 1

Kenneth Gregson

MIT Lincoln Laboratory

244 Wood Street

Lesington, MA 02173 1

John R. James

Washington Engineering Division

Intermetrics, Inc.

7918 Jones Branch Drive

Suite 710

McLean, VA 22012 1

Keng Low

SSC Lab

M.S. 4002

2550 Beckleymeade Avenue

Dallas, Texas 75237 1

Jeff Stewart

Software Engineering Institute

RM 5505

Carnegie Mellon University

Pittsburgh, PA 15213 1

Dist-1

INITIAL DISTRIBUTION LIST (CON’T)

Copies

James M. Short

ODDRE&E (R&AT)

RM. 3D1089, The Pentagon

Washington, D.C. 20301-3080 1

Connie Palmer

McDonnel Douglas

Computer & Software Technology Ctr

MS: 3064285 ’

St. Louis, MO 63133-0516 1

Chris Anderson

Ada-9X Project Office

PI/VTET

Kirkland AFB, NM 87117-6008 1

Virginia Caster

ODDRE&E

RM. 3E118, The Pentagon

Washington, D.C. 20301-3080 1

Sholom Cohen

Software Engineering Institute

Carnegie-Mellon University

Pittsburgh, PA 15213 1

CEA Incorporated

Blue Hills Office Park

150 Royall Street

Suite 260, ATTN: Mr. John Shockro

Canton, MA 01021 1

VITA

10229 N. Scottsdale Rd.

Suite B, ATTN: Mr. Ray Alderman

Scottsdale, AZ 85253 1

Westinghouse Electric Corp.

P.O. Box 746 — MS432

ATTN: Mr. Eli Solomon

Baltimore, MD 21203 1

Dept. of Computer Science B-173 .
Florida State University

ATTN: Dr. Ted Baker
Tallahassee, FL 323064019 1

Dist-2

M

DSD Laboratories
75 Union Avenue

INITIAL DISTRIBUTION LIST (CON’D)

ATTN: Mr. Roger Whitehead

Studbury, MA 01776
AMSMI-RD
AMSMI-RD-BA

AMSMI-RD-BA-AD,
AMSMI-RD-BA-C3,

AMSMI-RD-CS-R
AMSMI-RD-CS-T
AMSMI-RD-GC,
AMSMI-RD-GC-S,

AMSMI-RD-SS
AMSMI-GC-IP,
CSSD-CR-S,
SFAE-AD-ATA-SE,

SFAE-FS-ML~TM,

Bruce Lewis

Bob Christian

Dr. Paul Jacobs

Gerald E. Scheiman
Wanda M. Hughes
Phillip R. Acuff

Mr. Fred H. Bush
Mr. Frank Poslajko

Mr. Julian Cothran
Mr. John Carter

Mr. Frank Gregory

Dist-3/(Dist-4 Blank)

Copies

15

G = e R

b

[S

